干细胞信号转导PCR基因芯片(Stem Cell Signaling PCR Array)
干细胞信号转导PCR基因芯片可以同时检测参与胚胎干细胞(ESC)及诱导多能干细胞(IPSC)维护和分化的信号转导通路的84个关键基因的表达。多种生长因子共同维持干细胞的多能性状态,并指示ESC和IPS
细胞系识别PCR芯片(Cell Lineage Identification PCR Array)
细胞系识别PCR芯片可用于研究细胞分化相关的84个关键基因的表达。在胚胎发育阶段,多能干细胞分化成三胚层:外胚层、中胚层和内胚层,并最终成为分化细胞。研究这一过程需要监管相关基因表达的时序变化,并通过
终末分化标志物PCR芯片(Terminal Differentiation Markers PCR Array))
终末分化标志物PCR芯片可用于研究84个特定细胞类型鉴定关键基因的表达。使胚胎干细胞或诱导性多能干细胞(iPSCs)分化成特定的细胞类型是一个非常繁琐和费时的过程,需要在实验进行前检测多种阳性细胞标志
蛋白 磷酸化酶PCR芯片(Protein Phosphatases PCR Array )
蛋白 磷酸化酶PCR基因芯片可以同时检测与蛋白 磷酸化酶相关的84个重要基因的表达。蛋白 磷酸化酶可以反转关键蛋白被蛋白激酶(kinase)所磷 酸化的特定位点,从而广泛的参与蛋白激酶对信号转导的
肾毒性PCR芯片(Nephrotoxicity PCR Array)
肾毒性PCR芯片可用于研究的84个关键基因的表达,这些基因可以作为肾毒性的潜在的分子标志物。减小肾毒性仍然是新药上市最大的障碍之一。肾脏是药物排泄的重要器官,因此它是毒理学试验的重要研究对象。在动物模
Notch信号通路甲基化qPCR芯片(Notch Signaling Pathway EpiTect Methyl qPCR Array)
人类Notch信号通路EpiTect甲基二世签名PCR阵列配置文件的22个基因的启动子甲基化状态Notch信号转导的核心。Notch信号通路调节基因的表达调节信息交流和发展过程。DNA甲基化状态变化对
WNT信号通路ChIP qPCR芯片(WNT Signaling Pathway EpiTect CHIP qPCR Array)
WNT信号通路ChIP qPCR芯片分析WNT介导的信号通路84个关键基因的组蛋白修饰状态或组蛋白密码。组蛋白修饰调节染色质结构和与相关基因的转录活性。WNT家族分泌生长因子调节细胞命运和极性的发展过
TGFβ 信号靶标PCR 芯片(TGFβ Signaling Targets PCR Array)
TGF.信号靶标PCR芯片可用于研究84个TGF.信号转导应答关键基因的表达。TGF.超级家族由4个信号通路组成:TGF.,成骨蛋白(BMP),Activin,Nodal。这些通路调节多种细胞活动,